YIHAO SUN

(+86)13060070726 • sunyh@lamda.nju.edu.cn • www.yihaosun.cn

EDUCATION

M.Sc. in Computer Science and Technology

Nanjing University, Jiangsu, China LAMDA Group, School of Artificial Intelligence

B.Eng. in Software Engineering

Sichuan University, Sichuan, China School of Software Engineering

RESEARCH INTERESTS

My research interest is reinforcement learning (RL). Currently, I focus on offline reinforcement learning (Offline RL) and model-based reinforcement learning (MBRL). I am committed to improving the sample efficiency of online RL, deriving a performant policy from offline datasets, and learning a faithful environment model that enables reliable offline policy evaluation.

PUBLICATIONS

Model-Bellman Inconsistency for Model-based Offline Reinforcement learning. (pdf|code)ICML'23Co-first author.ICML'23

- Proposing a novel uncertainty quantification for uncertainty-driven model-based offline RL, which can better estimate the ideal uncertainty quantification, i.e., the Bellman error.
- Achieving SOTA on 20 of 27 evaluated benchmark datasets. Compared with MOPO, a representative modelbased offline RL algorithm, the performance of our algorithm is improved by 42.4%.

Model-based Reinforcement Learning with Multi-step Plan Value Estimation. (pdf|code)ECAI'23 (Oral)Co-first author.

- Proposing multi-step plan value to mitigate the influence of compounding error.
- Showing a better utilization of the learned model and achieving a better sample efficiency than previous modelbased RL approaches.

Episodic Return Decomposition by Difference of Implicitly Assigned Sub-Trajectory Reward. (pdf|code) AAAI'24 Fourth author.

- Proposing a novel episodic return decomposition method called Diaster (Difference of implicitly assigned subtrajectory reward).
- Experimental results show that our method outperforms previous methods in terms of both sample efficiency and performance, achieving SOTA on 6 of 7 tasks.

Flow-to-Better: Offline preference-based reinforcement learning via preferred trajectory generation. (pdf) ICLR'24

Co-first author.

- Proposing a novel diffusion-based framework for offline PbRL, i.e., Flow-to-Better(FTB), which uses a trajectory diffuser to achieve trajectory-wise improvement, avoiding TD learning with inaccurate rewards.
- Outperforming previous offline PbRL methods by a large margin and achieving SOTA on 6 of 9 evaluated benchmark datasets.

OPEN SOURCE PROJECTS

OfflineRL-Kit: An elegant PyTorch offline reinforcement learning library. (code)

180+ stars

95% code contribution.

- An elegant offline reinforcement learning library based on pure PyTorch.
- State-of-the-art offline RL algorithms, including model-free and model-based approaches.
- The first reproduction that matches or even exceeds the performance in the original papers of model-based offline RL.

Sep 2021 - Expected Jun 2024

Sep 2017 - Jun 2021

AWARDS AND HONORS	
Xiaomi Outstanding Scholarship (10 recipients schoolwide)	Sep 2023
First Prize Scholarship in Nanjing University	Nov 2021
First Prize Scholarship in Sichuan University	Nov 2018
Excellent Student in Sichuan University	Nov 2018